摘要
为了有效自动化地识别路面裂缝,在深度学习神经网络VGGNet基础上,提出了基于VGGNet-plus网络的路面裂痕自动分类识别方法。该网络增加了Dropout层和残差层,并在每个卷积层后连接Batch_normalize(BN)层和LeakyReLu层,解决了训练参数过多、深度神经网络的过拟合等问题,简化计算同时减少训练时间。为了增加训练样本的数量,同时使该方法对采集光照条件、角度、噪声等造成的影响具有更强的适应性和鲁棒性,通过灰度处理,上下翻转,左右翻转,灰度二值处理,均值滤波,灰度gamma处理,高斯滤波,中值滤波等方法来进行数据增容。通过Bagging模型集成方法,对预测的数据进行综合评估后选取最佳的预测结果。实验结果表明,VGGNet-plus网络在路面裂缝分类中的准确率可达92%,有效提升了路面裂缝自动检测精度。
- 单位