摘要
固定阶数的分布式自适应滤波算法只有在待估计向量的阶数已知且恒定的情况下才能达到相应的估计精度,在阶数未知或时变的情况下算法的收敛性能会受到影响,变阶数的分布式自适应滤波算法是解决上述问题的有效途径。但是目前大多数分布式变阶数自适应滤波算法以最小均方误差(Mean square Error, MSE)准则作为滤波器阶数的代价函数,在脉冲噪声环境下算法的收敛过程会受到较大影响。最大相关熵准则具有对脉冲噪声的强鲁棒性,且计算复杂度低。为提高分布式变阶数自适应滤波算法在脉冲噪声环境下的估计精度,利用最大相关熵准则作为滤波器阶数迭代的代价函数,并将得到的结果代入固定阶数的扩散式最大相关熵准则算法,提出了一种扩散式变阶数最大相关熵准则(Diffusion Variable Tap-length Maximum Correntropy Criterion, DVTMCC)算法。通过与邻域的节点进行通信,所提算法以扩散的方式实现了整个网络的信息融合,具有估计精度高、计算量小等优点。仿真实验对比了在脉冲噪声下DVTMCC算法和其他分布式变阶数自适应滤波算法、固定阶数的扩散式最大相关熵准则算法的收敛性能。仿真结果表明,在脉冲噪声环境下DVTMCC算法能够同时估计未知向量的阶数和权值,性能优于参与对比的算法。
-
单位重庆邮电大学; 通信与信息工程学院