摘要

为了解决传统深度卷积神经网络在舰船图像细粒度分类中的局限性,本文设计了细粒度遥感舰船开集识别模型。首先,引入了基于注意力机制的STN模块,加在特征提取网络前用来过滤背景信息;然后在STN模块后接一个多尺度的并行的卷积结构,强化网络对不同尺度的局部区域的特征提取能力;接着将提取到的特征分别输入基分支和元嵌入分支,用来增大类间方差和减小类内方差,同时强化模型对尾类小样本的学习;最后对两个分支的分类结果进行决策融合,根据设定的阈值判别已知类和未知类进一步对已知类进行细分。在平衡与不平衡分布的FGSCR-42数据集上进行了4种开放度实验,结果表明:在平衡分布的数据集上4种开放度的平均准确率为90.5%,86.3%,85.7%,85.1%,不平衡分布数据集的平均准确率为90.0%,85.1%,84.3%,84.1%。与当前主流的舰船识别方法相比,本文方法分类具有更高的识别准确率和更好的泛化能力。