一种改进型YOLOv5草莓检测算法

作者:陈玉堂; 唐忠; 张大伟*
来源:辽东学院学报(自然科学版), 2023, 30(03): 220-228.
DOI:10.14168/j.issn.1673-4939.2023.03.09

摘要

针对现有的草莓检测算法模型参数量大、准确率低、实时性差等问题,提出一种改进型YOLOv5草莓检测算法。算法基于YOLOv5模型,骨干网络引入GhostConv和C3Ghost模块进行参数量压缩,构造轻量化模型;加入Cutout增强数据,增加训练样本的多样性,进而提高模型的泛化能力和抗干扰能力;通过引入Gather-Excite和Transformer注意力机制加强对草莓图像重要特征的关注,从而提升检测算法在复杂环境下的识别能力。实验显示,所提算法的平均精度均值1和平均精度均值2分别为97.7%和83.5%,参数量缩减为4.01 M,推理时间为26.3 ms。改进后的算法相比原算法具有识别速度快、定位准度高以及占用内存少的优势,在满足精准采摘工作要求的前提下可以提高采摘效率。

全文