摘要
研究人体姿态与视频优化跟踪问题,单目视频缺少深度信息,使得单目视频的人体运动跟踪难以实现三维姿态恢复问题。为解决上述问题,提出了一种利用sift特征尺度不变性的优点进行人体上半身三维运动跟踪的算法。在跟踪过程中先计算初始匹配sift特征点对,然后反复迭代出除误匹配点,消除误差,最后求解由两个匹配sift特征组成的方程组得到胸部关节的位姿,根据人体骨骼模型采用深度遍历依次恢复其它关节的姿态。实验结果表明,系统能够对人体上半身运动进行比较准确的三维运动跟踪。
- 单位
研究人体姿态与视频优化跟踪问题,单目视频缺少深度信息,使得单目视频的人体运动跟踪难以实现三维姿态恢复问题。为解决上述问题,提出了一种利用sift特征尺度不变性的优点进行人体上半身三维运动跟踪的算法。在跟踪过程中先计算初始匹配sift特征点对,然后反复迭代出除误匹配点,消除误差,最后求解由两个匹配sift特征组成的方程组得到胸部关节的位姿,根据人体骨骼模型采用深度遍历依次恢复其它关节的姿态。实验结果表明,系统能够对人体上半身运动进行比较准确的三维运动跟踪。