摘要

事理图谱是研究事物动态发展的有效手段。针对金融因果事理图谱构建过程中数据集匮乏及构建方案缺少实践对比的现状,该文面向金融领域中发生频率较高的热点事件,研究构建事理图谱的方法。该文提出了一种新的金融领域事件论元的定义,制定了基于ATT+SBV结构的句法分析方案,针对信息抽取任务提出了面向金融因果事件的序列标注定义。该文同时提出了一种基于BERT+Bi-LSTM+CRF模型的信息抽取方案,并与不同神经网络模型进行对比研究。实验结果表明,该模型在信息抽取任务中,F1值达到95.78%,准确性有较大提升。该文通过Neo4j图数据库存储并构建金融因果事理图谱,以事件关系可视化的方式揭示现实金融事件的演变逻辑规律,分析金融网络的风险传导扩散机制。