运用锥上的不动点定理研究了一类带Dirichlet边界条件的二阶边值问题{u″(t)+a(t)u(t)+f(t,u(t))=0,t∈(0,1),u(0)=u(1)=0正解的存在性,其中a∈C([0,1],[0,∞))且在(0,1)的任意子区间内a(t)■0,f∈C([0,1]×[0,∞),[0,∞))。所得结果推广和改进了已有工作的相关结果。