摘要
将深度学习应用到医学影像中危及器官自动分割领域时,为解决训练样本不足时三维卷积神经网络优化出现的退化、梯度消失等问题,本研究将Dense Net与V-Net两个网络模型进行融合,开发一种用于三维计算机断层扫描(CT)图像自动分割的Dense V-Network算法,勾画女性盆腔危及器官。采用戴斯相似性系数(DSC)、豪斯多夫距离(HD)、杰卡德距离(JD)三个参数来定量评估分割效果。结果显示膀胱、小肠、直肠、股骨头和脊髓自动分割的DSC值均在0.87以上(平均值是0.9);JD值均在2.3以内(平均值是0.18);除小肠外,HD值均在0.9 cm以内(平均值是0.62 cm)。经验证,Dense V-Network网络可精准地勾画盆腔危及器官。
- 单位