摘要

针对传统光学摄像头和无线技术的手势识别方法受光照环境影响和空间纵向、横向特征不全的问题,该文提出一种基于调频连续波(Frequency Modulated Continuous Wave,FMCW)雷达信号的双流融合神经网络(Two-Stream Fusion Neural Network,TS-FNN)手势识别方法.首先,利用二维快速傅立叶变换(Fast Fourier Transform,FFT)求取中频信号的频谱,估计手势的距离和速度,并利用多重信号分类(Multiple Signal Classification,MUSIC)方法计算角度.其次,利用这三维参数在时间上的累积,将一个手势动作映射为32帧距离-速度矩阵图和角度时间图.最后,建立TS-FNN进行手势特征提取和特征融合.实验结果表明,TS-FNN方法与传统卷积神经网络相比,手势的平均识别准确率提升了约5%.