摘要

为了提高尾矿库风险预警能力,针对尾矿库稳定性受多种风险因素影响,以及风险变化的非线性,提出1种融合集合经验模态分解(EEMD)和长短期记忆(LSTM)的尾矿库风险预测模型。首先,采用皮尔逊相关系数分析尾矿库风险因素之间的相关性;然后,使用EEMD方法分解非线性的位移序列;最后,构建LSTM网络模型预测位移变化。以某尾矿库为例,将EEMD-LSTM模型与EEMD-BP模型、LSTM模型对比分析,评估模型的有效性。研究结果表明:EEMD-LSTM模型对尾矿库风险的预测精度明显提高,对防范化解尾矿库安全风险具有重要意义。