地面小目标快速检测算法研究

作者:欧阳乐诚; 王华力
来源:信号处理, 2019, 35(12): 1952-1958.
DOI:10.16798/j.issn.1003-0530.2019.12.003

摘要

由于地面小目标像素低、携带信息量少等特点,常规数据集上的目标检测算法直接用于地面小目标的检测,会出现漏检和错检现象。针对此问题,该文基于深度学习算法,提出将一种改进的YOLOv3算法应用于地面小目标检测。利用K-means算法对数据集中目标进行聚类分析,选取合适的anchor boxes数量和大小。通过增加一个检测小目标的特征图,建立特征融合目标检测层,改进YOLOv3网络检测尺度。在遥感数据集DOTA检测实验中,用改进的YOLOv3算法与YOLOv3算法进行对比实验,结果表明改进后的算法能有效检测地面小目标,查准率提高17.04%,查全率提高了6.44%;与Faster R-CNN算法对比,改进的YOLOv3算法的mAP提高了12.7%。在改进的YOLOv3算法训练时,加入dropout优化机制,其在测试集上的mAP得分又提高了3.24%。

  • 单位
    中国人民解放军陆军工程大学