摘要
为了构造评分卡模型并保证数据的隐私性,提出一种可信执行环境下的联邦逻辑回归系统。该系统利用可信执行环境的强安全性来抵御参数交互过程中的推演攻击,通过联合归一化和改进的联邦平均方法分别解决局部数据尺度的不一致性和类别不均衡分布下的评分卡模型有效性问题。在一个公开信用卡违约数据集上的测试结果表明:所提出的改进联邦平均方法与典型联邦平均方法相比,能更有效地应对类别不均衡分布问题;与同态加密联邦学习系统相比,能大大提高执行效率。
-
单位扬州大学广陵学院