摘要
和声搜索算法(harmony search, HS)是一种随机元启发式算法,其灵感来自于音乐家的即兴创作过程。针对HS在求解中易陷入局部极值等不足,本文提出一种混合布谷鸟算子的改进的和声布谷鸟搜索算法(modified HS with a hybrid cuckoo search (CS) operator, HSCS)增强全局搜索能力。该算法首先对HS音高扰动调整方法的随机性进行分析,根据和声库中解的质量生成自适应惯性权重,并重构微调带宽寻优,提升HS的寻优效率及精度。其次,引入CS算子扩大解空间的搜索范围和提高种群密度,从而能够在随机生成和声和更新阶段快速跳出局部极值。最后,构建动态参数调整机制以提高算法寻优的效率。通过证明3个定理揭示HS-CS是一种全局收敛的元启发式算法。在实验部分,选取12种经典的测试函数优化求解以验证HS-CS算法的性能。数值分析结果表明,HS-CS在处理高维函数优化问题上显著优于其他算法,表现出较强鲁棒性、高收敛速度以及收敛精度。为进一步验证算法在实际问题求解中的有效性,将HS-CS用于优化BP神经网络进行加权模糊产生式的规则抽取。仿真实验结果表明,HS-CS优化后的BP神经网络能够获得较高的规则分类精度。因此,从理论和应用方面都证明了HS-CS是行之有效的。
-
单位吉首大学; 电子工程学院