基于改进QPSO-SVR的航空发动机排气温度预测

作者:皮骏; 黄江博; 黄磊; 高树伟; 刘光才
来源:振动.测试与诊断, 2019, 39(02): 267-440.
DOI:10.16450/j.cnki.issn.1004-6801.2019.02.006

摘要

为了减少航空发动机排气温度的随机性对飞机安全飞行的影响,提出了改进量子粒子群优化支持向量回归机(improved quantum behaved particle swarm optimization support vector regression,简称IQPSO-SVR)的航空发动机排气温度预测模型,以A319飞机的V2500发动机为例,选取状态监控所监测的性能参数数据作为训练样本和测试样本,其中航空发动机的高压转子转速、低压转子转速、燃油流量、高压压气机出口温度以及时间t作为模型的输入,以航空发动机排气温度作为模型的输出,在不同组训练样本的条件下,对改进量子粒子群优化过的支持向量回归基模型进行测试,并与量子粒子群优化支持向量回归机(quantum behaved particle swarm optimization support vector regression,简称QPSO-SVR)、支持回归机(support vector regression,简称SVR)进行对比。研究结果表明,改进量子粒子群优化支持向量回归机在航空发动机排气温度预测中相较其他两方法准确性更高,同时,在添加噪声的情况下,IQPSO-SVR也具有较好的预测能力。

全文