针对现有的图像语义分割算法存在的因细节信息丢失导致分割效果不佳的问题,论文提出一种基于DeepLabV3+的改进算法。论文的深度学习网络分为编码器和解码器模块,在编码器模块使用改进的ResNet_101和空洞空间金字塔池化结构提取多尺度特征,在解码器模块结合多个输出,并且融合图像低层信息,解决目标细节丢失问题。为验证论文算法的有效性,在PASCAL VOC 2012数据集上进行实验,结果表明,改进后的算法在物体细节处理方面得到了良好效果,性能方面有所提升。