摘要
针对城市交通中交叉路口短时交通流预测问题,本文提出了一种IWOA-LSTM模型,该模型是在传统的WOA算法基础上,对初始种群进行tent混沌初始化,同时将线性递减的收敛因子改进为非线性的方式,再将改进后的IWOA算法与LSTM神经网络模型结合,所得到的IWOA-LSTM模型提高了对交通流预测的精度.本文选取了8个基准测试函数对IWOA算法进行性能测试和仿真实验,验证了改进的IWOA算法在收敛速度以及精度上的优势.最后将IWOALSTM模型的预测结果和PSO-LSTM模型的预测结果分别与实际交通流量进行对比,得出IWOA-LSTM算法误差更小的结论.
- 单位