摘要

随着SDN网络应用的推广,SDN网络的安全也越来越受到重视,基于模式识别的网络入侵检测由于无法一次性收集完备的训练数据集,使得对未知的入侵行为识别率不高。为提高入侵检测系统的自适应性,提出了增量集成学习算法,并用该算法解决SDN入侵检测问题。该算法利用滑动窗口法获得数据块,对新的数据块进行训练获得子分类器,然后依据在历史数据块和当前数据块的分类结果筛选子分类器进行集成,使得分类模型不断完善从而能够自适应的识别未知攻击行为。通过在NSL-KDD数据集上的实验结果可以看到,该算法可以提高未知攻击的识别率。