摘要
命名实体识别是自然语言处理领域的基础性工作,旨在从非结构化文本中识别出具有特定意义的实体并分类,在多种自然语言处理任务中发挥重要作用。由于中文命名实体没有明显的边界标记,且存在歧义和嵌套等问题,其识别过程比英语等其他语言要更为复杂。近年来,深度学习技术发展迅速,在中文命名实体识别中得到广泛应用,并已成为主流方法。系统梳理中文命名实体识别中深度学习技术的研究进展,重点从文本表示、特征编码、预测解码3个方面,对比分析代表性工作的关联性和关键技术,讨论研究中存在的问题、现有解决方案和未来的研究方向。
- 单位