摘要
针对工业场景下阵列目标图像存在非均匀背景、缺陷干扰和弱边缘导致目标分割精度低的问题,提出边界感知SegFormer网络的阵列目标图像分割方法。首先,针对固定种子易受背景和缺陷干扰的问题,提出自适应种子搜索策略。该策略利用种子位置与目标定位精度的相关性构建种子分布热力图,并在热力图的引导下自适应搜索理想种子目标,实现阵列目标的高精度全局分割。其次,设计边界感知SegFormer网络进行局部分割,利用递归门控卷积强调特征的长距离和高阶空间交互,改进的门控残差边界细化模块能够学习更丰富的边缘信息,同时引入混合损失函数加强对区域内部和边缘像素的监督,引导网络更好地学习目标边缘特征,提高边界分割精度。在自建晶粒数据集和语义分割数据集Cityscapes上的验证实验表明,提出的分割方法能在背景不均、缺陷污染、边缘对比度低的高分辨率阵列目标图像中完整精确地分割目标,并具有较高的实时性。
- 单位