针对位置社交网络中连续兴趣点推荐系统面临的个性化偏好、数据稀疏性和签到行为的隐式反馈属性等挑战,提出一种基于排序学习的连续兴趣点推荐模型。本文使用三阶张量模型对用户的连续签到行为进行建模,并利用LBSNs中的地理信息定义用户访问兴趣点的地理距离偏好,最后使用基于排序学习的优化标准优化求解模型参数。在两个真实的LBSNs数据集上的实验结果表明,本文提出的模型在推荐性能上优于当前流行的兴趣点推荐算法。