摘要

基于软注意力机制的图像描述算法,提出类激活映射-注意力机制的图像描述方法。利用类激活映射算法得到卷积特征包含定位以及更丰富的语义信息,使得卷积特征与图像描述具有更好的对应关系,解决卷积特征与图像描述的对齐问题,生成的自然语言描述能够尽可能完整的描述图像内容。选择双层长短时记忆网络改进注意力机制结构,使得新的注意力机制适合当前全局和局部信息的特征表示,能够选取合适的特征表示生成图像描述。试验结果表明,改进模型在诸多评价指标上优于软注意力机制等模型,其中在MSCOCO数据集上Bleu-4的评价指标相较于软注意力模型提高了16.8%。类激活映射机制可以解决图像空间信息与描述语义对齐的问题,使得生成的自然语言减少丢失关键信息,提高图像描述的准确性。