摘要
卷烟烟包外包装图案缺失检测是卷烟生产中的重要环节,目前常用的图案缺失检测方法普遍存在漏检率高、识别精度不够和速度慢等问题。因此本文提出了一种基于YOLOv4-tiny的烟包缺陷快速检测方法。该方法主要包括:(1)使用CSPDarknet53-tiny对图像特征进行提取。(2)通过添加多空间空洞卷积融合模块,获得丰富的上下文信息,增强感受野,从而提高模型的检测精度。(3)使用EIoU边框位置回归损失函数,提高烟盒图案识别预测框的精确率。本文方法与YOLOv4-tiny进行对比,实验结果表明,本文算法m AP值为97.35%,检测烟包外观的平均时间为17ms,能够满足卷烟小包外观检测对时间和精确率的要求。相较于YOLOv4-tiny在m AP上提升了1.34%,在AverageIoU上提升了3.68%,速度基本与YOLOv4-tiny持平,在保持快速检测的同时能够有效的提高精度。
- 单位