摘要

目前故障诊断问题常使用的人工智能方法是根据采集的传感器信号建立多维特征空间,然后基于经典机器学习方法对故障信号进行诊断。上述方法能够取得较为理想的诊断结果,但在连续时域应用上具有局限性。针对这个问题展开研究:基于轴承振动数据集,通过对单一信号的不同时间序列引入GAF变换得到对应的特征图像数据集,采用CNN进行图像分类实现故障诊断,同时将随机森林、支持向量机和决策树作为对照方法进行分析。实验结果表明:在时间维度上,“GAF+CNN”方法具有一定的分类效果,其诊断准确率低于决策树,略低于随机森林,但优于支持向量机,说明在时间维度上进行特征提取和故障诊断具有可行性且能达到与对照方法相近的诊断效果。

全文