摘要
为了有效地利用经验知识,弥补训练数据覆盖范围不足的问题,提出一种将经验知识以TSK(Takagi-Sugeno-Kang)型模糊规则引入模糊模型的建模方法.在结构辨识中,提出了模糊规则融合方法,用以确定初始模糊规则.在参数辨识中,改进了原梯度下降方法中的目标函数,并引入了经验知识准确性评价参数,用以平衡样本数据和经验知识对模型的影响.数值仿真和工程实例应用结果表明,所提出的方法可以有效地利用经验知识和样本数据,使预报结果更可靠、更精确.
-
单位东北大学; 流程工业综合自动化国家重点实验室