车辆传动系统变参小波流形融合故障诊断方法

作者:王俊; 王玉琦; 轩建平; 刘金朝; 黄伟国*; 朱忠奎
来源:交通运输工程学报, 2023, 23(01): 170-183.
DOI:10.19818/j.cnki.1671-1637.2023.01.013

摘要

应用流形学习方法非线性融合信号在不同小波参数下中央尺度对应的小波包络,研究了强背景噪声下车辆传动系统振动信号故障瞬态脉冲包络的有效提取问题,并与传统信号时频分解方法进行了对比研究;采用不同小波参数对振动信号进行连续小波变换,提取了每组参数下中央尺度上的小波包络;采用基尼指数选择若干包含故障瞬态脉冲信息的小波包络,构造了高维小波包络矩阵;采用局部切空间排列算法对高维小波包络进行流形融合,获得了反映故障瞬态脉冲包络本质结构的小波包络流形;为了验证所提方法的有效性和优越性,采用不同方法对轨道车辆轮对轴承和汽车变速齿轮箱的故障振动信号进行了对比分析。研究结果表明:在分析轴承外圈故障信号时,所提方法基尼指数比传统信号时频分解方法提高27.32%以上;在分析齿轮磨损故障信号时,所提方法基尼指数比传统信号时频分解方法提高26.74%以上。可见,所提方法通过综合具有不同形态的变参小波包络,可以在无需优化小波参数情况下,对车辆传动系统中的不同关键部件故障振动信号具有较好的自适应性,提取的故障脉冲包络中的带内噪声少,故障脉冲特性明显,容易识别其频谱中的故障特征频率,是检测车辆传动系统故障的一种有效方法。

全文