摘要
为解决基于深度学习模型的目标检测任务在移动设备和嵌入式设备上难以部署的问题,以现有的YOLO系列模型为实例,提出一种轻量级目标检测网络模型small-YOLOV3及small-YOLOV4。提取YOLO模型的主干网络作为基础结构,采用SPP、PANet、FPN等重新轻量化设计,对轻量级模型int8量化达到降低参数大小和计算量的目的。实验结果表明,small-YOLOV3及small-YOLOV4模型在保证一定精度的情况下,其大小缩减为原模型的1/49,有效提高了在硬件条件受限情况下目标检测任务的速度。
-
单位北京电子科技职业学院; 天津工业大学; 北京工美集团有限责任公司