摘要

大规模人脸数据集上的快速检索是人脸识别应用的关键问题。较短长度人脸哈希方法可降低人脸特征比对的计算量,有助于大规模人脸识别的应用。为此提出了一种基于三元组损失函数的深度人脸哈希方法,通过优化三元组损失函数训练深度卷积神经网络以提取图像深层特征,使得由该特征表征的同类图像在欧式空间中的距离尽可能小,不同类图像在欧式空间中的距离尽可能大;通过在深度网络后添加随机映射层,进一步将高维特征映射到低维空间,并通过阈值化将低维空间映射到汉明空间。在多个标准的数据集上的实验结果表明本文方法相比于现有其他方法的优越性。