摘要
针对目前风电塔筒焊缝缺陷人工检测或自动检测方法中存在的安全性差、效率低和准确率低等问题,提出一种改进Faster R-CNN焊缝缺陷检测方法。首先,制作焊缝缺陷样本数据集,并对有限的数据集通过数据增强技术进行样本扩充,改进RPN网络,利用K-means聚类方法生成更加接近目标区域的anchor box;同时结合ResNet深度残差网络,获取更小的焊缝缺陷细节特征,最后为了能获得精确的缺陷位置,采用一种基于IOU(intersection over union)值的三层级联结构。实验结果表明,改进后的Faster R-CNN模型对5种焊缝样本的检测mAP值为89.6%,对工厂的实际操作有较高的应用价值。
- 单位