摘要
轴承是舰船故障发生的常见位置,针对现有机器学习方法在舰船轴承故障诊断领域中存在多分类精度差、运算效率低等问题,提出一种基于Cat Boost(category boosting)算法的轴承诊断技术。首先,对振动信号进行时域分析、频域分析以及EMD(empirical mode decomposition)分解,得到截选振动信号段的特征指标;其次,利用Cat Boost算法在所提取特征中进行筛选,通过基尼指数快速建立树结构并进行排序。最后,选取不同维数特征输入进行模型算法评价,并与传统方法分类的准确率进行对比。试验结果表明,该方法在处理滚动轴承故障多分类问题上故障特征提取更为有效,识别效果明显高于其他传统算法。
- 单位