摘要

针对连续数据流分类问题,基于在线学习理论,提出一种在线logistic回归算法.研究带有正则项的在线logistic回归,提出了在线logistic-l2回归模型,并给出了理论界估计.最终实验结果表明,随着在线迭代次数的增加,提出的模型与算法能够达到离线预测的分类结果.本文工作为处理海量流数据分类问题提供了一种新的有效方法.