摘要
在现实生活中的很多应用里,对不同类别的样本错误地分类往往会造成不同程度的损失,这些损失可以用非均衡代价来刻画.代价敏感学习的目标就是最小化总体代价.提出了一种新的代价敏感分类方法——代价敏感大间隔分布学习机(cost-sensitive large margin distribution machine,CS-LDM).与传统的大间隔学习方法试图最大化"最小间隔"不同,CS-LDM在最小化总体代价的同时致力于对"间隔分布"进行优化,并通过对偶坐标下降方法优化目标函数,以有效地进行代价敏感学习.实验结果表明,CS-LDM的性能显著优于代价敏感支持向量机CS-SVM,平均总体代价下降了24%.
-
单位计算机软件新技术国家重点实验室; 南京大学