摘要
序列推荐系统可以根据用户和物品交互的时间序列信息,精确预测用户下一次交互物品.现有的序列推荐算法存在用户兴趣过渡拟合的问题,导致推荐内容同质化严重,从而无法实现个性化推荐.基于此,本文提出一种融合知识图谱与注意力机制的个性化序列推荐算法(SR-KGA):首先,引入知识图谱,通过图卷积网络对物品进行嵌入表示;其次,通过自注意力机制和多头注意力机制构建序列到序列(seq2seq)模型,最后,在损失函数中加入多样性正则项;实现用交互序列来预测未来可能交互的物品序列,从而进行推荐.通过在真实的数据集上实验,SR-KGA在保证推荐准确度的同时,提升了推荐列表的多样性,实现了用户个性化推荐.
- 单位