摘要
为研究大学生共享单车出行行为,以福州市大学城各高校学生为研究对象,利用问卷调查采集各年级学生共享单车出行数据.首先,基于所获得的数据计算各节点的互信息值,假设贝叶斯网络参数服从Dirichlet分布,采用K2算法进行贝叶斯网络结构学习,利用贝叶斯估计法进行贝叶斯网络的参数学习,从而构建大学生共享单车出行行为的贝叶斯网络.然后,利用所构建的网络进行共享单车出行方式预测,计算该模型的预测值与实际值的误差,分析模型的精度,且与常用的Logit模型预测结果进行比较.最后,在所构建的网络模型基础上,应用联合树引擎分析是否拥有私人交通工具、出行距离等影响因素对大学生共享单车出行行为的影响.分析结果表明,贝叶斯网络学习精度较高,比Logit模型预测结果更有效.
-
单位土木工程学院; 国家知识产权局; 福州大学