摘要

深入研究不同肺部疾病的X射线光片,有助于更清晰、准确地区分和预测各种疾病。基于此,提出一种基于高效通道注意力机制的胸部X光片疾病分类算法。将高效通道注意力模块以密集连接的方式加入基础特征提取网络,以增强特征通道中有效信息的传递,同时抑制无效信息的传递;使用非对称卷积块提高网络特征提取能力;采用多标签损失函数解决多标签和数据不平衡的问题。将新型冠状病毒肺炎X光片添加到公开数据集Chest X-ray 14中构成数据集Chest X-ray 15,在该数据集上的实验结果表明,所提基于高效通道注意力机制的胸部X光片疾病分类算法的平均area under curve(AUC)值达到0.8245,对气胸的AUC值达到0.8829,性能优于对比算法。