摘要

长期径流预报是保障水利水电工程科学运行管理的重要支撑.随着社会经济的发展,生产实践对长期径流预报精度和预见期长度的更高要求与当前预报的表现出现了矛盾.该研究提出了一种基于深度置信网络(DBN)模型的考虑气候系统指数的长期径流预报框架,并探索了其在预见期1~12个月时的预报表现.结果表明:(1)基于该框架进行预见期为1~12个月的径流预报时,在测试期的纳什效率系数(NSE)值均高于0.50,平均相对误差(MRE)值均低于35%,预报精度较高,且随着预见期的延长,径流预报能力并未呈现下降趋势;(2)在各预见期下,训练期和测试期的预报效果评估指标相差不大,说明采用的基于DBN模型的径流预报框架不存在过拟合的问题,具有优秀的泛化能力;(3)在各预见期下,汛期的径流预报效果在NSE和决定系数R2指标上优于非汛期,在MRE指标上劣于非汛期.

全文