摘要

本发明公开了一种基于状态动态感知的多智能体合作学习方法,通过自主训练获得协调完成任务目标的多智能体控制系统,步骤如下:对各个智能体分别进行状态编码;对每个智能体构建一个动态感知层对其状态集合进行处理,将动态长度的状态集合映射成固定长度的特征;每个智能体的特征输入到各自带有通信单元的Q值网络,从网络输出中选取具有最大Q值的动作作为决策动作;各智能体将动作执行于环境,从环境中获取反馈奖励后,对所有智能体的动态感知层参数和Q值网络参数进行更新;使用上述框架训练多智能体,获得多智能体合作控制系统。本发明适用于要求动态数量游戏角色合作完成任务的游戏系统中,可作为游戏中多智能体的人工智能系统。