摘要

基于西安市2001—2017年有关房价的历史数据,建立了Adaptive-Lasso变量选择模型,分析并识别影响房价的关键因素,构建灰色预测模型与BP神经网络的组合模型来预测西安市2018年—2020年的房价。结果发现,西安市生产总值GDP、财政收入、城镇居民人均可支配收入、城镇居民家庭的恩格尔系数、城镇居民人口和住宅销售面积等6个因素对西安市住宅价格的变动影响较大,最后通过灰色GM(1,1)预测模型与灰色预测和BP神经网络的组合模型预测结果的比较,验证了模型的有效性。