摘要

在复杂机电系统多故障并发情形下,面向单一故障的诊断方法难以辅助维修人员决策,容易产生误诊和漏诊的问题。本文提出一种面向复杂机电系统多故障并发下的故障诊断方法,引入损失函数,用Elman网络对故障类型进行初判,改良结合纠错输出码与支持向量机(ECOC-SVM)的分类器设计,对Elman网络识别的故障类型进行筛选,实现可能故障原因在线推送。本文收集来自某船用发动机公司售后维修部的真实数据,针对某类型的船用发动机,以其故障诊断过程为例进行实验,验证本文提出的方法有显著优势,结果表明:本文提出的分类算法,在提高复杂机电系统并发故障的诊断效率和诊断质量方面,性能优于常用机器学习分类方法。