提出了一种基于稀疏表示和低秩矩阵逼近的图像去噪算法:首先,通过对图像块的数据矩阵进行奇异值分解和全局子空间分析,确定信号子空间和噪声子空间;其次,利用图像块与信号子空间的距离寻找相似块,并将相似块分组为训练样本;再次,对相似块矩阵进行奇异值分解,并确定表示相似块的奇异向量;最后,去除表示噪声的基.实验结果表明,该算法能够有效去除图像中的噪声并较好地保留图像细节.