摘要

为提高林火风险预测精度,挖掘地图上隐含的空间信息、时间序列上隐含的长期趋势和循环波动,提出1种基于缓冲区重采样的长短期记忆(LSTM)林火预测模型,选取15个与林火相关的影响因素,以方差膨胀因子为评价指标对其进行多重共线性检验,方差膨胀因子大于10的因素具有共线性,并采用信息增益率验证筛选结果的合理性。考虑到火灾的空间聚集特性,采用缓冲区分析与过采样相结合方法减少样本不均衡现象的影响,最终得到176 732条样本。对12个影响因素和研究时间段的火点建立LSTM预测模型,对森林火灾发生风险进行预测。研究结果表明:基于缓冲区重采样的LSTM林火预测模型有效考虑时空上隐含的信息,预测模型准确率为87.06%,特异性为97.99%,敏感度为76.12%,阳性预测率为97.43%,阴性预测率为80.41%,ROC曲线与AUC值均优于随机森林(RF)和支持向量机(SVM)这2种基准算法。维尔克松秩和检验发现,本文提出的模型与基准算法结果具有显著性差异。研究结果可为提高林火风险预测精度提供参考。