摘要

【目的】对Rosenau-Kawahara方程的初边值问题进行了数值研究,给出了求解Rosenau-Kawahara方程的Sinc配点法。【方法】空间离散采用Sinc配点法,时间离散采用向前有限差分法,并引入参数θ来建立混合差分格式。【结果】对差分格式的稳定性进行了分析,并得到了稳定性条件。【结论】数值实验证明了所构造方法的有效性,且Crank-Nicholson格式的数值结果优于有限差分法和五次B样条方法。