摘要
【目的】人工智能技术以全新的自适应学习视角为灌区智慧化建设带来了异于传统的研究范式,迄今已有众多智能算法与技术应用于灌区用水调度决策研究中,但已有成果缺乏便利性和易操作性,无法真正落地。【方法】为此,本文通过对比分析人工智能技术中的随机森林和BP神经网络模型,发现融合SHAP(Shapley additive explanation,SHAP)方法的随机森林模型具有更优的灌区用水调度预测效果。在此基础上,基于历史实测数据将灌区用水调度变量划分为不同梯度,表征出9.82×1011组用水调度场景样本,并采用预先训练的随机森林模型获得了各样本对应的调度流量预测值,由此形成了灌区用水调度场景与调度流量值之间映射关系的基础数据库,即在现有调度历史数据的基础上利用机器学习模型丰富和加密了调度场景,得到了能实现基本覆盖现实调度场景的调度场景库。基于该场景数据库,利用Neo4j图形库构建出淠史杭灌区用水调度流量预测值知识图谱模型。【结果】利用该图谱模型,灌区用水调度管理人员仅需确认目标调度场景中各调度变量在知识图谱模型中的近似梯度值,即可检索获得调度流量预测值。【结论】经应用验证表明,由该知识图谱模型获得的调度流量预测值误差在淠史杭灌区用水管理人员的经验认知范围内,且可实现调度流量值的实时检索。
-
单位中国水利水电科学研究院; 流域水循环模拟与调控国家重点实验室