摘要

提出了基于多维高斯贝叶斯模型的设备故障智能诊断流程,包括数据的筛选与结构化分析、数据的降维、模型的构建、诊断结果的检验与分析等。研究表明采用主成分分析方法进行降维时,不同的诊断对象在降维参数的选择方面存在较大差别,诊断效果因诊断对象和样本数量的不同而有所差异。利用公开发表的超声波流量计数据库对流程进行验证。结果显示:针对B型流量计进行280次、C型流量计进行550次智能故障诊断,故障状态的首选正确识别率分别达到99.3%和95.1%,较k-最近邻(KNN)聚类分析算法有一定的优势。