针对液压信号的高度复杂性以及难以识别的特点,提出一种基于深度置信网络的方法用于液压泵内泄漏状态的诊断。首先利用小波变换和HHT对压力信号和流量信号进行提取特征,然后利用堆叠RBM网络对原始特征集进行优化,并提取高级的融合特征,最后使用BP进行预测。实验结果表明:DBN能够有效地提取原始特征集的内在特征,使液压信号得到了更好的表达;DBN对液压泵内泄漏状态识别精度达到了98.77%;相比于SSAE和H-ELM分类器,DBN对液压泵内泄漏状态有更好的辨识能力和稳定性。