同类叶片图像的复杂多样性增加了植物识别研究的难度,导致利用叶片图像进行植物识别的识别率不高,因此提出一种基于典型相关分析(CCA)全局和局部特征融合的植物识别方法。首先,采用有较好的光照及旋转不变性的梯度直方图(HOG)和边缘轮廓Fourier描述子作为植物识别的特征;然后利用CCA在特征层将HOG和Fourier描述子相融合,构成更具分类鉴别力的一个特征向量;最后利用K-最近邻分类器进行植物识别。在ICL叶片图像数据库上的试验结果表明了该方法的有效性。