摘要
[目的/意义]提出一种涵盖不同学习者的学习风格、知识水平以及学习模式等特征的差异的在线资源推荐技术,以克服学习者在拥有海量学习电子资源的在线学习平台中难以检索到满足其需求的学习资源的信息过载问题。[方法/过程]针对在线学习环境及其产生的数据,利用本体方法对学习者和学习资源的领域知识进行建模和表示,并使用循环神经网络挖掘学习者的学习模式,得到最终的资源推荐列表。[结果/结论]所提出的系统与传统的协同过滤及融合本体知识的协同过滤方法相比,在推荐结果的准确率(Precision)、召回率(Recall)和平均倒数排名(MRR)三个指标上分别取得显著提升。[局限]模型在训练过程中的时间和空间消耗较大,存在进一步改进的空间。
- 单位