摘要
针对蚁狮算法存在的早熟收敛和不易得到全局最优解等问题,借鉴混沌优化算法,提出了自适应Tent混沌搜索蚁狮算法.该算法首先使用Tent混沌映射初始化种群,然后自适应调整混沌搜索空间得到最优解,改善适应度较差个体,提高种群整体的适应度和寻优效率,同时使用锦标赛策略选择蚁狮个体.最后,利用混沌算子优化蚂蚁随机游走行为,与蚁狮觅食行为形成了全局、局部并行搜索模式.分别使用复杂高维基准函数和航迹规划问题测试算法性能.其中,6个复杂高维基准函数的寻优测试实验表明,对于30维基准函数,该算法经过约0.5秒收敛到最优值;对于50维基准函数,约2秒收敛到最优值.与标准蚁狮算法和其他优化算法相比,该算法具有较好的收敛速度和寻优精度,适合复杂高维函数寻优.航迹规划实验表明,对于包含7个威胁源的空域环境,当搜索维度为10维时,该算法经过0.939秒,迭代30次基本可以达到航迹代价的全局最优值.与标准蚁狮算法相比,能够更加快速准确地得到一条满足要求的航迹,具有实际应用价值.
-
单位空军工程大学航空航天工程学院