摘要
高光谱图像(hyper spectral imagery,HSI)分类已成为探测技术的重要研究方向之一,同时也在军事和民用领域得到广泛运用。然而,波段数目巨大、数据冗余、空间特征利用率低等因素已成为高光谱图像分类的挑战,且现有的高光谱分类大多利用可见光或短波红外高光谱数据分类。针对这些问题,本文提出了一种基于光谱和空间特征的K-means分类方法。首先提取空间特征,然后将光谱与空间特征相结合并降维,最后引入K-means算法得到较普通K-means更佳的分类结果。并将此算法运用在长波红外的高光谱图像分类中。
-
单位云南大学; 昆明物理研究所