摘要

针对海鸥优化算法(SOA)收敛速度慢、容易陷入局部最优等问题,提出3种提高SOA算法寻优能力的改进策略:对非线性收敛因子与螺旋系数进行改进,以改善全局与局部搜索的协调能力,加快收敛速度;通过拓展攻击行为与攻击角度,以并行搜索的方式提升局部寻优性能;引入动态反向学习,使算法快速跳出局部最优,优化全局搜索。基于马尔可夫过程分析了改进海鸥优化算法(ISOA)的收敛性。通过16个基准函数测试了ISOA算法的寻优性能,并将其应用于PID(proportional-integral-derivative)参数整定中,结果表明,提出的改进策略能显著提高SOA算法的收敛速度与求解精度,ISOA算法在参数优化领域具有较好的应用效果。

全文