摘要

高质量图像是计算机视觉任务的基础,但实际生活中高光的出现会覆盖物体表面的纹理和颜色信息,导致图像质量显著下降。目前用于高光去除的深度学习方法往往需要大量高光-无高光配对图像进行监督,而高光图像对应的无高光版本存在收集和处理困难的问题。本文提出一种基于弱监督学习的图像镜面高光去除算法,旨在仅使用高光图像完成训练且达到很好的高光去除效果。首先,利用稀疏非负矩阵分解(NMF)方法估计图像的高光区域,并从无高光区域裁剪出无高光的参考图像。然后,将两者输入到联合训练的高光生成、高光消除和图像重建模块,协同优化各模块功能。总体采用循环生成对抗网络(CycleGAN)架构训练网络并最终生成无高光图像。选取自然图像数据集SHIQ和LIME进行实验,实验结果表明,所提方法能够有效去除镜面高光,并且在性能上对比现有的弱监督学习方法有较大提升。

全文